Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Animal Cells and Sys...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal Cells and Systems
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions

ERK1/2 activation by theC. elegansmuscarinic acetylcholine receptor GAR-3 in cultured mammalian cells involves multiple signaling pathways

Authors: Youngmi Shin; Youngju Shin; Seungwoo Kim; Yang-Seo Park; Nam Jeong Cho;

ERK1/2 activation by theC. elegansmuscarinic acetylcholine receptor GAR-3 in cultured mammalian cells involves multiple signaling pathways

Abstract

Extracellular signal-regulated kinases 1/2 (ERK1/2) play important roles in a variety of biological processes including cell growth and differentiation. We have previously reported that GAR-3 activates ERK1/2 via phospholipase C and protein kinase C, presumably through pertussis toxin (PTX)-insensitive Gq proteins, in Chinese hamster ovary (CHO) cells. Here we provide evidence that GAR-3 also activates ERK1/2 through PTX-sensitive G proteins, phosphatidylinositol 3-kinase (PI 3-kinase), and Src family kinases in CHO cells. We further show that in human embryonic kidney (HEK293) cells, epidermal growth factor receptor and Ras are required for efficient ERK1/2 activation by GAR-3. Taken together, our data indicate that GAR-3 evokes ERK1/2 activation through multiple signaling pathways in cultured mammalian cells.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold