Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Cell Migration and Programmed Cell Death of Drosophila Germ Cells

Authors: Clark R. Coffman;

Cell Migration and Programmed Cell Death of Drosophila Germ Cells

Abstract

Abstract: Cell migration and programmed cell death are essential components of animal development and homeostasis, and the germ cells of Drosophila provide a simple genetic system to study the molecular mechanisms that govern these important cellular processes. Detailed descriptions of germ cell migration in Drosophila were accomplished long ago, but most genetic and molecular analyses of the process have occurred within the past 10 years. A few of the genes required for germ cell migration have been identified, and a very interesting picture is emerging. However, a process as complex as cell migration must involve the functions of many more molecules. In addition, cell migration and cell death mechanisms are often linked, as it is important to eliminate cells that are misplaced and could present a danger to the organism. In Drosophila, genes involved in germ cell migration can also affect programmed cell death. Currently, very little is known about how germ cells ectopic to the gonads are eliminated. To date, only four genes have been reported with roles in germ cell death, and three of these have additional functions in germ cell pathfinding. The nature of the cell death program has not been elucidated. Here, I provide a brief review of Drosophila germ cell migration and programmed cell death at both the descriptive and molecular levels. Many questions remain to be answered, but advances made in recent years are providing useful insights into these critical biological phenomena.

Related Organizations
Keywords

Drosophila melanogaster, Germ Cells, Cell Movement, Animals, Drosophila Proteins, Apoptosis, Female, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average