Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical & Experimen...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical & Experimental Metastasis
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Gene silencing of c-Met leads to brain metastasis inhibitory effects

Authors: Jung-Il Lee; Do-Hyun Nam; Kyeung Min Joo; Ho Jun Seol; Younggeon Jin; Younggeon Jin; Se Jeong Lee; +8 Authors

Gene silencing of c-Met leads to brain metastasis inhibitory effects

Abstract

An unfortunate consequence of improvements in the treatments of advanced primary cancers is the concurrent increase of metastatic brain tumors. Despite of unfavorable clinical prognosis, radiation therapy is still the only viable treatment option for brain metastases. Expression of c-Met induces cell migration and invasion in many cancers, which are indispensable steps for metastasis. Accordingly, we examined the effects of gene silencing of c-Met on brain metastasis to evaluate the possibility of c-Met as a potential target. MDA-MB-435 cells were transfected with c-Met targeting short hairpin RNAs (shRNAs). Effects of c-Met shRNAs on the expression of epithelial mesenchymal transition (EMT) related proteins, in vitro migration, and in vivo brain metastasis were examined. Expression of mesenchymal markers and in vitro migration of MDA-MB-435 cells were significantly inhibited by introduction of c-Met shRNAs. When c-Met-silenced MDA-MB-435 cells were stereotactically implanted into the brains of immune-compromised mice or injected into the right internal carotid arteries, c-Met-silenced MDA-MB-435 cells produced significantly smaller tumor masses or survival time was significantly prolonged, respectively, compared with MDA-MB-435 cells transfected with control shRNA. The data reveal the novel function of c-Met in the process of brain metastasis and its potential as a preventive and/or therapeutic target in this disease.

Related Organizations
Keywords

Mice, Inbred BALB C, Epithelial-Mesenchymal Transition, Base Sequence, Brain Neoplasms, Reverse Transcriptase Polymerase Chain Reaction, Breast Neoplasms, Proto-Oncogene Proteins c-met, Mice, Cell Line, Tumor, Animals, Humans, Female, Gene Silencing, Cell Proliferation, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%