Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Abnormal Thin Filament Calcium Binding Associated with Cardiac Muscle Diseases Can be Corrected Through TnC Mutagenesis

Authors: Svetlana B. Tikunova; Bin Liu; Jonathan P. Davis; Jack A. Rall; Ryan S. Lee;

Abnormal Thin Filament Calcium Binding Associated with Cardiac Muscle Diseases Can be Corrected Through TnC Mutagenesis

Abstract

The Ca2+ sensitivity of cardiac muscle force development can be adversely altered during disease. Since troponin C (TnC) is the Ca2+ sensor for muscle contraction, TnC's Ca2+ binding properties may be affected by the disease related protein modifications. To test this hypothesis, a fluorescent TnC was utilized to measure the Ca2+ binding sensitivity of TnC in the physiologically relevant biochemical model system of reconstituted thin filaments. Consistent with the pathophysiology, the inherited restrictive cardiomyopathy (RCM) mutation TnI R192H and ischemia induced truncation of TnI (residues 1-192) increased TnC's Ca2+ binding sensitivity ∼3 fold and ∼7 fold, respectively; while the dilated cardiomyopathy (DCM) mutation TnT deltaK210 decreased TnC's Ca2+ binding sensitivity ∼ 3 fold. Since the symptoms of the diseases may be caused by the abnormal Ca2+ binding, correcting the Ca2+ binding might improve cardiac function. To achieve this goal, we have engineered TnC constructs with a wide, yet adjustable, range of Ca2+ binding sensitivities by modulating the negatively charged residues in the Ca2+ chelating loop and/or by replacing key hydrophobic amino acids in the regulatory domain of TnC with polar Gln. We were able to correct both the increased and decreased thin filament Ca2+ sensitivities caused by the disease associated proteins via replacing the wild type TnC with specifically engineered TnC constructs. Additionally, engineered TnC constructs can correct the disease related abnormal Ca2+ sensitivity of the acto-myosin ATPase assay and the force-pCa relationship in skinned trabeculae. This study can potentially lead to a novel therapeutic strategy for treating cardiac muscle diseases.

Keywords

Biophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid