Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Antimicro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Antimicrobial Chemotherapy
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ

Authors: E Lucile, White; William J, Suling; Larry J, Ross; Lainne E, Seitz; Robert C, Reynolds;

2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ

Abstract

Compounds originally designed as putative tubulin inhibitors were tested as antitubercular agents for inhibition of the Mycobacterium tuberculosis analogue of tubulin, FtsZ. Initial screening of 200 2-alkoxycarbonylpyridines found several that inhibited M. tuberculosis growth. Two compounds, SRI-3072 and SRI-7614, inhibited FtsZ polymerization and were equipotent against susceptible and single-drug-resistant strains of M. tuberculosis. In addition, SRI-3072 reduced the growth of M. tuberculosis in mouse bone marrow macrophages. Our results suggest that these types of compound might be developed into antitubercular drugs effective against the current multidrug-resistant strains of M. tuberculosis.

Related Organizations
Keywords

Macrophages, Pteridines, Antitubercular Agents, Bone Marrow Cells, Azepines, Microbial Sensitivity Tests, Mycobacterium tuberculosis, GTP Phosphohydrolases, Cytoskeletal Proteins, Inhibitory Concentration 50, Mice, Bacterial Proteins, Chlorocebus aethiops, Tuberculosis, Multidrug-Resistant, Animals, Carbamates, Vero Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%
bronze