Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2003 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions

Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant

Authors: Nicola A, Ramsay; Amanda R, Walker; Mark, Mooney; John C, Gray;

Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant

Abstract

Basic helix-loop-helix (bHLH) proteins, similar to mammalian Myc transcription factors, regulate the anthocyanin biosynthetic pathway in both monocots and dicots. Two Arabidopsis bHLH genes, GLABRA3 (GL3) and MYC-146, encode proteins that are similar throughout the predicted amino acid sequence to R and DELILA, which regulate anthocyanin production in maize and snapdragon, respectively. Northern blot analysis indicates that MYC-146 is most highly expressed in flower buds and flowers. Expression of a MYC-146 cDNA from the CaMV 35S promoter was unable to complement the anthocyanin deficiency in a ttg1 mutant of Arabidopsis and resulted in no obvious phenotypic change in Columbia plants. However, transient expression of GL3 and MYC-146 upon microprojectile bombardment of petals of a white-flowered mutant of Matthiola incana was able to complement anthocyanin deficiency. The lack of anthocyanin-deficient Arabidopsis mutants mapping to the locations of GL3 and MYC-146 suggests that the two bHLH proteins may be partially redundant and overlap in function.

Keywords

DNA, Plant, Sequence Homology, Amino Acid, Arabidopsis Proteins, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Genetic Complementation Test, Helix-Loop-Helix Motifs, Molecular Sequence Data, Sequence Analysis, DNA, Blotting, Northern, Plants, Genetically Modified, Anthocyanins, Phenotype, Gene Expression Regulation, Plant, RNA, Plant, Brassicaceae, Mutation, Basic Helix-Loop-Helix Transcription Factors, Amino Acid Sequence, Carrier Proteins, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%