Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Methodsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Methods
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Methods
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Methods
Article . 2010
versions View all 3 versions

A paired-end sequencing strategy to map the complex landscape of transcription initiation

Authors: Ni, Ting; Corcoran, David L; Rach, Elizabeth A; Song, Shen; Spana, Eric P; Gao, Yuan; Ohler, Uwe; +1 Authors

A paired-end sequencing strategy to map the complex landscape of transcription initiation

Abstract

Recent studies using high-throughput sequencing protocols have uncovered the complexity of mammalian transcription by RNA polymerase II, helping to define several initiation patterns in which transcription start sites (TSSs) cluster in both narrow and broad genomic windows. Here we describe a paired-end sequencing strategy, which enables more robust mapping and characterization of capped transcripts. We used this strategy to explore the transcription initiation landscape in the Drosophila melanogaster embryo. Extending the previous findings in mammals, we found that fly promoters exhibited distinct initiation patterns, which were linked to specific promoter sequence motifs. Furthermore, we identified many 5' capped transcripts originating from coding exons; our analyses support that they are unlikely the result of alternative TSSs, but rather the product of post-transcriptional modifications. We demonstrated paired-end TSS analysis to be a powerful method to uncover the transcriptional complexity of eukaryotic genomes.

Keywords

Nonmammalian, Embryo, Nonmammalian, Transcription, Genetic, Gene Expression Regulation, Developmental, 612, Article, Promoter Regions, Drosophila melanogaster, Genetic, Gene Expression Regulation, Embryo, Animals, Drosophila Proteins, RNA, Developmental, Promoter Regions, Genetic, Transcription, Nucleic Acid Amplification Techniques

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    151
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
151
Top 1%
Top 10%
Top 1%
Green
hybrid