Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Brain Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Brain Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Altered emotional behavior in PACAP-type-I-receptor-deficient mice

Authors: C, Otto; M, Martin; D P, Wolfer; H P, Lipp; R, Maldonado; G, Schütz;

Altered emotional behavior in PACAP-type-I-receptor-deficient mice

Abstract

PAC1 (pituitary adenylate cyclase activating polypeptide type I receptor) is a G-protein-coupled receptor that binds the strongly conserved neuropeptide PACAP (pituitary adenylate cyclase activating polypeptide) with a thousandfold higher affinity than the related peptide VIP (vasoactive intestinal peptide). PAC1 shows strong expression in brain areas which have been implicated in the emotional control of behavior, such as the amygdala, the hypothalamus, the locus coeruleus and the periaqueductal gray. To assess whether PAC1-mediated signaling has an impact on emotional behavior, we analysed two different mutant mouse lines with an ubiquitous or a forebrain-specific inactivation of PAC1 in several testing paradigms modelling general locomotor activity and anxiety-related behavior. We clearly demonstrate that mice with a ubiquitous but not with a forebrain-specific deletion of PAC1 exhibit elevated locomotor activity and strongly reduced anxiety-like behavior. We could not observe any gross alteration in circadian rhythmicity nor any enhanced sensitivity towards ethanol in the mutant mice. We previously demonstrated that PAC1 plays a crucial role in contextual fear conditioning. Therefore the finding that PAC1-deficient mice exhibit reduced anxiety is quite exciting, since the receptor and hence its ligand PACAP seem to be important for both, innate and learned fear.

Keywords

Male, Mice, Knockout, Ethanol, Emotions, Neuropeptides, Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Brain, Fear, Anxiety, Motor Activity, Circadian Rhythm, Mice, Inbred C57BL, Mice, Prosencephalon, Organ Specificity, Exploratory Behavior, Animals, Pituitary Adenylate Cyclase-Activating Polypeptide, Female, Maze Learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 10%