Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Amino Acid Sequence Requirement for Efficient Incorporation of Glycosylphosphatidylinositol-associated Proteins into the Cell Wall of Saccharomyces cerevisiae

Authors: K, Hamada; H, Terashima; M, Arisawa; K, Kitada;

Amino Acid Sequence Requirement for Efficient Incorporation of Glycosylphosphatidylinositol-associated Proteins into the Cell Wall of Saccharomyces cerevisiae

Abstract

During cell wall biogenesis in Saccharomyces cerevisiae, some glycosylphosphatidylinositol (GPI)-attached proteins are detached from GPI moieties and bound to beta-1,6-glucan of the cell wall. The amino acid sequence requirement for the incorporation of GPI-attached proteins into the cell wall was studied by using reporter fusion proteins. Only the short omega-minus region composed of five amino acids, which is located upstream of the omega site for GPI attachment, determined the cellular localization of the GPI-associated proteins. Within the omega-minus region, amino acid residues at the omega-4 or -5 and omega-2 sites were important for the cell wall incorporation. Yap3p, a well characterized GPI-anchored plasma membrane aspartic protease, was localized in the cell wall when the omega-minus region was mutated to sequences containing Val or Ile at the omega-4 or -5 site and Val or Tyr at the omega-2 site.

Related Organizations
Keywords

Fungal Proteins, Saccharomyces cerevisiae Proteins, Amino Acid Substitution, Cell Wall, Glycosylphosphatidylinositols, Molecular Sequence Data, Aspartic Acid Endopeptidases, Membrane Proteins, Amino Acid Sequence, Saccharomyces cerevisiae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
gold