Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Behavioural Brain Research
Article . 2016
License: taverne
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Behavioural Brain Research
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions

TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice

Authors: Mario Losen; Marc H. De Baets; Harry W.M. Steinbusch; Pilar Martinez-Martinez; Jos Prickaerts; Jos Prickaerts; Janneke Boere; +5 Authors

TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice

Abstract

Brain-derived neurotrophic factor (BDNF) exerts antidepressant-like effects in the hippocampus and pro-depressant effects in the nucleus accumbens (NAc). It is thought that downstream signaling of the BDNF receptor TrkB mediates the effects of BDNF in these brain structures. Here, we evaluate how TrkB regulates affective behavior in the hippocampus and NAc. We overexpressed TrkB by electroporating a non-viral plasmid in the NAc or hippocampus in mice. Depression- and anxiety-like behaviors were evaluated in the sucrose test (anhedonia), the forced swim test (despair) and the elevated zero maze (anxiety). Targeted brain tissue was biochemically analyzed to identify molecular mechanisms responsible for the observed behavior. Overexpressing TrkB in the NAc increased the number of young neuronal cells and decreased despair and basal corticosterone levels. TrkB overexpression in the hippocampus increased astrocyte production and activation of the transcription factor CREB, yet without altering affective behavior. Our data suggest antidepressant effects of BDNF-TrkB in the NAc, which could not be explained by activation of the transcription factors CREB or β-catenin. The effects TrkB has on depression-related behavior in different brain regions appear to critically depend on the targeted cell type.

Country
Netherlands
Keywords

Male, Behavior, Animal, Depression, TrkB, Anxiety, Hippocampus, Nucleus Accumbens, Mice, Inbred C57BL, Disease Models, Animal, Mice, Electroporation, Astrocytes, Taverne, Animals, Receptor, trkB, Corticosterone

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Green
hybrid