Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Cdc7p-Dbf4p becomes famous in the cell cycle

Authors: Robert A. Sclafani;
Abstract

ABSTRACT Great insight into the molecular details of cell cycle regulation has been obtained in the past decade. However, most of the progress has been in defining the regulation of the family of cyclin-dependent kinases (CDKs). Recent studies of a myriad of eukaryotic organisms have defined both the regulation and substrates of Cdc7p kinase, which forms a CDK–cyclin-like complex with Dbf4p, is necessary for the initiation of DNA replication and has been conserved in evolution. This kinase is also required for the induction of mutations after DNA damage and for commitment to recombination in the meiotic cell cycle. However, less is known about the role of the kinase in these processes. In a manner similar to CDKs, Cdc7p is activated by a regulatory subunit, Dbf4, the levels of which fluctuate during the cell cycle. One or more subunits of the conserved MCM helicase complex at chromosomal origins of DNA replication are substrates for the kinase during S phase. Phosphorylation of the MCM complex by Cdc7p-Dbf4p might activate DNA replication by unwinding DNA. Therefore, activation of Cdc7p is required for DNA replication. Given that Cdc7p-Dbf4 kinase is overexpressed in many neoplastic cells and tumors, it might be an important early biomarker during cancer progression.

Keywords

Saccharomyces cerevisiae Proteins, Cell Cycle, Cell Cycle Proteins, Protein Serine-Threonine Kinases, Substrate Specificity, Enzyme Activation, Fungal Proteins, Animals, Humans, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 10%
Top 1%