Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Insect Systematics a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Insect Systematics and Diversity
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Insect Systematics and Diversity
Article
License: CC BY NC ND
Data sources: UnpayWall
ZENODO
Article . 2019
Data sources: ZENODO
ZENODO
Article . 2019
Data sources: ZENODO
versions View all 3 versions

Revision of the Highly Specialized Ant Genus Discothyrea (Hymenoptera: Formicidae) in the Afrotropics with X-Ray Microtomography and 3D Cybertaxonomy

Authors: Francisco Hita-Garcia; Ziv Lieberman; Ziv Lieberman; Cong Liu; Evan P. Economo; Tracy Lynn Audisio;

Revision of the Highly Specialized Ant Genus Discothyrea (Hymenoptera: Formicidae) in the Afrotropics with X-Ray Microtomography and 3D Cybertaxonomy

Abstract

AbstractDiscothyrea Roger, 1863 is a small genus of proceratiine ants with remarkable morphology and biology. However, due to cryptic lifestyle, Discothyrea are poorly represented in museum collections and their taxonomy has been severely neglected. We perform the first comprehensive revision of Discothyrea in the Afrotropical region through a combination of traditional and three-dimensional (3D) cybertaxonomy based on microtomography (micro-CT). Species diagnostics and morphological character evaluations are based on examinations of all physical specimens and virtual analyses of 3D surface models generated from micro-CT data. Additionally, we applied virtual dissections for detailed examinations of cephalic structures to establish terminology based on homology for the first time in Discothyrea. The complete datasets comprising micro-CT data, 3D surface models and videos, still images of volume renderings, and colored stacked images are available online as cybertype datasets (Hita Garcia et al. 2019, http://doi.org/10.5061/dryad.3qm4183). We define two species complexes (D. oculata and D. traegaordhi complexes) and revise the taxonomy of all species through detailed illustrated diagnostic character plates, a newly developed identification key, species descriptions, and distribution maps. In total, we recognize 20 species; of which, 15 are described as new. We also propose D. hewitti Arnold, 1916 as junior synonym of D. traegaordhi Santschi, 1914 and D. sculptior Santschi, 1913 as junior synonym of D. oculata Emery, 1901. Also, we designate a neotype for D. traegaordhi to stabilize its status and identity, and we designate a lectotype for D. oculata. The observed diversity and endemism are discussed within the context of Afrotropical biogeography and the oophagous lifestyle.

Keywords

Insecta, Arthropoda, Animalia, Biodiversity, Hymenoptera, Formicidae, Taxonomy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
  • 3
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
17
Top 10%
Average
Top 10%
3
hybrid