Higher brain functions of PACAP and a homologous Drosophila memory gene amnesiac: insights from knockouts and mutants
pmid: 12270109
Higher brain functions of PACAP and a homologous Drosophila memory gene amnesiac: insights from knockouts and mutants
Neuropeptides usually exert a long-lived modulatory effect on the small-molecule neurotransmitters with which they colocalize via regulation of the response times of second messenger systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuromodulator and neurotransmitter and regulates a variety of physiological processes. PACAP is structurally highly conserved during evolution, implying its vital importance. In Drosophila, loss-of-function mutations in a PACAP-like neuropeptide gene, amnesiac (amn), affect both memory retention and ethanol sensitivity. The amnesiac gene is expressed in neurons innervating the mushroom body lobes, the olfactory associative learning center. Conditional genetic ablation of neurotransmitter release from these neurons mimics the amnesiac memory phenotypes, suggesting an acute role for amnesiac in memory. However, genetic rescue experiments also suggest developmental defects in amnesiac mutants, implying a role in neuronal development. There is a parallel between memory formation in Drosophila and mammals. PACAP-specific (PAC(1)) receptor-deficient mice show a deficit in hippocampus-dependent associative learning and mossy fiber long-term potentiation (LTP). Meanwhile, PACAP-deficient mice display a high early mortality rate and additional CNS phenotypes including behavioral and psychological phenotypes (e.g., hyperlocomotion, intense novelty-seeking behavior, and explosive jumping). A functional comparison between PACAP and amnesiac underlines phylogenetically conserved functions across phyla and may provide insights into the possible mechanisms of action and evolution of this neuropeptidergic system.
- Osaka University Japan
Mammals, Sequence Homology, Amino Acid, Molecular Sequence Data, Neuropeptides, Memory, Mutagenesis, Animals, Drosophila Proteins, Pituitary Adenylate Cyclase-Activating Polypeptide, Drosophila, Nervous System Physiological Phenomena, Amino Acid Sequence, Sequence Alignment, Gene Deletion
Mammals, Sequence Homology, Amino Acid, Molecular Sequence Data, Neuropeptides, Memory, Mutagenesis, Animals, Drosophila Proteins, Pituitary Adenylate Cyclase-Activating Polypeptide, Drosophila, Nervous System Physiological Phenomena, Amino Acid Sequence, Sequence Alignment, Gene Deletion
29 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).61 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
