Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Antiviral Research
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
UNC Dataverse
Article . 2022
Data sources: Datacite
versions View all 4 versions

Conserved coronavirus proteins as targets of broad-spectrum antivirals

Authors: Cleber C. Melo-Filho; Tesia Bobrowski; Holli-Joi Martin; Zoe Sessions; Konstantin I. Popov; Nathaniel J. Moorman; Ralph S. Baric; +2 Authors

Conserved coronavirus proteins as targets of broad-spectrum antivirals

Abstract

Coronaviruses are a class of single-stranded, positive-sense RNA viruses that have caused three major outbreaks over the past two decades: Middle East respiratory syndrome–related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All outbreaks have been associated with significant morbidity and mortality. In this study, we have identified and explored conserved binding sites in the key coronavirus proteins for the development of broad-spectrum direct acting anti-coronaviral compounds and validated the significance of this conservation for drug discovery with existing experimental data. We have identified four coronaviral proteins with highly conserved binding site sequence and 3D structure similarity: PLpro, Mpro, nsp10-nsp16 complex(methyltransferase), and nsp15 endoribonuclease. We have compiled all available experimental data for known antiviral medications inhibiting these targets and identified compounds active against multiple coronaviruses. The identified compounds representing potential broad-spectrum antivirals include: GC376, which is active against six viral Mpro (out of six tested, as described in research literature); mycophenolic acid, which is active against four viral PLpro (out of four); and emetine, which is active against four viral RdRp (out of four). The approach described in this study for coronaviruses, which combines the assessment of sequence and structure conservation across a viral family with the analysis of accessible chemical structure – antiviral activity data, can be explored for the development of broad-spectrum drugs for multiple viral families.

Related Organizations
Keywords

SARS-CoV-2, Drug Discovery, Middle East Respiratory Syndrome Coronavirus, COVID-19, Humans, Antiviral Agents, Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Green