Powered by OpenAIRE graph
Bloodarrow_drop_down
Blood
Article . 1999 . Peer-reviewed
Data sources: Crossref
Blood
Article . 1999 . Peer-reviewed
Data sources: Crossref
Blood
Article . 1999
versions View all 3 versions

A New Fusion Gene TPM3-ALK in Anaplastic Large Cell Lymphoma Created by a (1;2)(q25;p23) Translocation

Authors: L, Lamant; N, Dastugue; K, Pulford; G, Delsol; B, Mariamé;

A New Fusion Gene TPM3-ALK in Anaplastic Large Cell Lymphoma Created by a (1;2)(q25;p23) Translocation

Abstract

AbstractAnaplastic large cell lymphomas (ALCL) are frequently associated with the t(2;5)(p23;q35). This translocation fuses the nucleophosmin (NPM) gene at 5q35, which encodes a nucleolar protein involved in shuttling ribonucleoproteins from the cytoplasm to the nucleus, to the anaplastic lymphoma kinase (ALK) gene at 2p23, encoding a tyrosine kinase receptor. In this report, we describe a typical case of ALCL whose malignant cells exhibited a novel (1;2)(q25;p23) translocation. These cells expressed ALK protein, but, in contrast to t(2;5)-positive ALCL (which show cytoplasmic, nuclear, and nucleolar staining), labeling was restricted to the malignant cell cytoplasm. Using a polymerase chain reaction (PCR)-based technique to walk on chromosome 2 from the known ALK gene across the breakpoint, we showed that the gene involved at 1q25 is TPM3, encoding a nonmuscular tropomyosin. We subsequently identified, using reverse transcription-PCR analysis of cases showing similar ALK cytoplasm-restricted staining, fusion of the ALK andTPM3 genes in 2 other cases of ALCL. The TPM3 gene has been previously found in papillary thyroid carcinomas as a fusion partner with the TRK kinase gene. We showed that TPM3 is constitutively expressed in lymphoid cell lines, suggesting that, in these t(1;2)-bearing ALCL cases, the TPM3 gene contributes an active promoter for ALK expression. Activation of the ALK catalytic domain probably results from homodimerization of the hybrid protein TPM3-ALK, through the TPM3 protein-protein interaction domain. The present cases of ALCL associated with a novel t(1;2)(q25;p23) demonstrate that at least one fusion partner other than NPM can activate the intracytoplasmic domain of the ALK kinase.

Keywords

Base Sequence, Oncogene Proteins, Fusion, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Chromosome Mapping, Receptor Protein-Tyrosine Kinases, Tropomyosin, Protein-Tyrosine Kinases, Translocation, Genetic, Chromosomes, Human, Pair 1, Chromosomes, Human, Pair 2, Karyotyping, Humans, Lymphoma, Large-Cell, Anaplastic, Anaplastic Lymphoma Kinase, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    303
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
303
Top 1%
Top 1%
Top 1%