New insights on thioredoxins (Trxs) and glutaredoxins (Grxs) by in silico amino acid sequence, phylogenetic and comparative structural analyses in organisms of three domains of life
New insights on thioredoxins (Trxs) and glutaredoxins (Grxs) by in silico amino acid sequence, phylogenetic and comparative structural analyses in organisms of three domains of life
Thioredoxins (Trxs) and Glutaredoxins (Grxs) regulate several cellular processes by controlling the redox state of their target proteins. Trxs and Grxs belong to thioredoxin superfamily and possess characteristic Trx/Grx fold. Several phylogenetic, biochemical and structural studies have contributed to our overall understanding of Trxs and Grxs. However, comparative study of closely related Trxs and Grxs in organisms of all domains of life was missing. Here, we conducted in silico comparative structural analysis combined with amino acid sequence and phylogenetic analyses of 65 Trxs and 88 Grxs from 12 organisms of three domains of life to get insights into evolutionary and structural relationship of two proteins. Outcomes suggested that despite diversity in their amino acids composition in distantly related organisms, both Trxs and Grxs strictly conserved functionally and structurally important residues. Also, position of these residues was highly conserved in all studied Trxs and Grxs. Notably, if any substitution occurred during evolution, preference was given to amino acids having similar chemical properties. Trxs and Grxs were found more different in eukaryotes than prokaryotes due to altered helical conformation. The surface of Trxs was negatively charged, while Grxs surface was positively charged, however, the active site was constituted by uncharged amino acids in both proteins. Also, phylogenetic analysis of Trxs and Grxs in three domains of life supported endosymbiotic origins of chloroplast and mitochondria, and suggested their usefulness in molecular systematics. We also report previously unknown catalytic motifs of two proteins, and discuss in detail about effect of abovementioned parameters on overall structural and functional diversity of Trxs and Grxs.
- Banaras Hindu University India
H1-99, Science (General), Glutathione, Social sciences (General), Q1-390, Thioredoxins, 3D structure comparison, Oxidoreductase, Glutaredoxins, Phylogeny, Research Article
H1-99, Science (General), Glutathione, Social sciences (General), Q1-390, Thioredoxins, 3D structure comparison, Oxidoreductase, Glutaredoxins, Phylogeny, Research Article
49 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2022IsRelatedTo
- 2017IsRelatedTo
- 2009IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
