Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Interactions between PIAS Proteins and SOX9 Result in an Increase in the Cellular Concentrations of SOX9

Authors: Benoit de Crombrugghe; Tomoaki Kahyo; Hideyo Yasuda; Jing-Fang Lu; Takako Hattori; Heidi Eberspaecher; Ren Zhang; +1 Authors

Interactions between PIAS Proteins and SOX9 Result in an Increase in the Cellular Concentrations of SOX9

Abstract

We have identified PIAS1 (protein inhibitor of activated STAT-1), -3, -xalpha, and -xbeta as SOX9-associated polypeptides using the Gal4-based yeast two-hybrid system and a cDNA library derived from a chondrocytic cell line. These PIAS proteins were shown to interact directly with SOX9 in two-hybrid, co-immunoprecipitation, and electrophoretic mobility shift assays. SOX9 was sumoylated in cotransfection experiments with COS-7 cells using PIAS and SUMO-1 (small ubiquitin-like modifier-1) expression vectors. SOX9 was also sumoylated in vitro by PIAS proteins in the presence of SUMO-1, the SUMO-activating enzyme, and the SUMO-conjugating enzyme. In COS-7 cells, PIAS proteins stimulated the SOX9-dependent transcriptional activity of a Col2a1 promoter-enhancer reporter. This increase in reporter activity was paralleled by an increase in the cellular levels of SOX9. Cotransfection with a SUMO-expressing vector further enhanced the transcriptional activity of this SOX9-dependent Col2a1 reporter in COS-7 cells, and this additional activation was inhibited in the presence of either SUMO-1 mutants or PIAS RING domain mutants or by coexpression of a desumoylation enzyme. Immunofluorescence microscopy of SOX9-transfected COS-7 cells showed that the subnuclear distribution of SOX9 became more diffuse in the presence of PIAS1 and SUMO-1. Our results suggest that, by controlling the cellular concentrations of SOX9, PIAS proteins and sumoylation may be part of a major regulatory system of SOX9 functions.

Keywords

DNA, Complementary, SUMO-1 Protein, High Mobility Group Proteins, SOX9 Transcription Factor, Transfection, Protein Inhibitors of Activated STAT, Rats, Enhancer Elements, Genetic, Genes, Reporter, COS Cells, Chlorocebus aethiops, Animals, Humans, Promoter Regions, Genetic, Collagen Type II, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
gold