Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1995 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
Genetics
Article . 1996
versions View all 2 versions

Deleterious background selection with recombination.

Authors: R R, Hudson; N L, Kaplan;

Deleterious background selection with recombination.

Abstract

Abstract An analytic expression for the expected nucleotide diversity is obtained for a neutral locus in a region with deleterious mutation and recombination. Our analytic results are used to predict levels of variation for the entire third chromosome of Drosophila melanogaster. The predictions are consistent with the low levels of variation that have been observed at loci near the centromeres of the third chromosome of D. melanogaster. However, the low levels of variation observed near the tips of this chromosome are not predicted using currently available estimates of the deleterious mutation rate and of selection coefficients. If considerably smaller selection coefficients are assumed, the low observed levels of variation at the tips of the third chromosome are consistent with the background selection model.

Related Organizations
Keywords

Recombination, Genetic, Drosophila melanogaster, Models, Genetic, Animals, Selection, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    381
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
381
Top 1%
Top 1%
Top 1%
hybrid