Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Cell
Article . 2012
versions View all 2 versions

The Defective Proteasome but Not Substrate Recognition Function Is Responsible for the Null Phenotypes of the Arabidopsis Proteasome Subunit RPN10

Authors: Ya-Ling, Lin; Shu-Chiun, Sung; Hwang-Long, Tsai; Ting-Ting, Yu; Ramalingam, Radjacommare; Raju, Usharani; Antony S, Fatimababy; +3 Authors

The Defective Proteasome but Not Substrate Recognition Function Is Responsible for the Null Phenotypes of the Arabidopsis Proteasome Subunit RPN10

Abstract

Ubiquitylated substrate recognition during ubiquitin/proteasome-mediated proteolysis (UPP) is mediated directly by the proteasome subunits RPN10 and RPN13 and indirectly by ubiquitin-like (UBL) and ubiquitin-associated (UBA) domain-containing factors. To dissect the complexity and functional roles of UPP substrate recognition in Arabidopsis thaliana, potential UPP substrate receptors were characterized. RPN10 and members of the UBL-UBA-containing RAD23 and DSK2 families displayed strong affinities for Lys-48-linked ubiquitin chains (the major UPP signals), indicating that they are involved in ubiquitylated substrate recognition. Additionally, RPN10 uses distinct interfaces as primary proteasomal docking sites for RAD23s and DSK2s. Analyses of T-DNA insertion knockout or RNA interference knockdown mutants of potential UPP ubiquitin receptors, including RPN10, RPN13, RAD23a-d, DSK2a-b, DDI1, and NUB1, demonstrated that only the RPN10 mutant gave clear phenotypes. The null rpn10-2 showed decreased double-capped proteasomes, increased 20S core complexes, and pleiotropic vegetative and reproductive growth phenotypes. Surprisingly, the observed rpn10-2 phenotypes were rescued by a RPN10 variant defective in substrate recognition, indicating that the defectiveness of RPN10 in proteasome but not substrate recognition function is responsible for the null phenotypes. Our results suggest that redundant recognition pathways likely are used in Arabidopsis to target ubiquitylated substrates for proteasomal degradation and that their specific roles in vivo require further examination.

Keywords

Proteasome Endopeptidase Complex, Binding Sites, Arabidopsis Proteins, Recombinant Fusion Proteins, Ubiquitin-Protein Ligases, Genetic Complementation Test, Molecular Sequence Data, Arabidopsis, Flowers, Plants, Genetically Modified, Substrate Specificity, DNA-Binding Proteins, Plant Leaves, Protein Subunits, DNA Repair Enzymes, Phenotype, Proteolysis, Humans, Ubiquitins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze