Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Both WFIKKN1 and WFIKKN2 Have High Affinity for Growth and Differentiation Factors 8 and 11

Authors: Mária Trexler; Katalin Kondás; László Patthy; György Szláma;

Both WFIKKN1 and WFIKKN2 Have High Affinity for Growth and Differentiation Factors 8 and 11

Abstract

WFIKKN1 and WFIKKN2 are large extracellular multidomain proteins consisting of a WAP, a follistatin, an immunoglobulin, two Kunitz-type protease inhibitor domains, and an NTR domain. Recent experiments have shown that WFIKKN2 protein binds mature GDF8/myostatin and myostatin propeptide and inhibits the biological activity of myostatin (Hill, J. J., Qiu, Y., Hewick, R. M., and Wolfman, N. M. (2003) Mol. Endocrinol. 17, 1144-1154). Here we show that the paralogue of this protein, WFIKKN1, also binds to both myostatin and myostatin propeptide and that both WFIKKN1 and WFIKKN2 bind GDF11, the growth and differentiation factor most closely related to myostatin, with high affinity. Structure-function studies on WFIKKN1 have revealed that the follistatin domain is primarily responsible for the binding of mature growth factor, whereas the NTR domain contributes most significantly to the interaction with myostatin propeptide. Analysis of the evolutionary histories of WFIKKN1/WFIKKN2 and GDF8/GDF11 proteins indicates that the functional association of an ancestral WFIKKN protein with an ancestor of GDF8/11 may date back to cephalochordates/urochordates. Although duplication of the corresponding genes gave rise to WFIKKN1/WFIKKN2 and GDF8/GDF11 in early vertebrates, the data presented here suggest that there is significant functional overlap of the paralogous proteins.

Keywords

Proteins, Myostatin, Recombinant Proteins, Cell Line, Protein Structure, Tertiary, Evolution, Molecular, Growth Differentiation Factors, Structure-Activity Relationship, Transforming Growth Factor beta, Gene Duplication, Bone Morphogenetic Proteins, Animals, Humans, Intercellular Signaling Peptides and Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
gold