Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Food Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Food Science
Article . 1985 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions

Binding of 14C‐Labeled Food Mutagens (IQ, MeIQ, MeIQx) by Dietary Fiber In Vitro

Authors: PER B. SJÖDIN; MARGARETA E. NYMAN; LENA NILSSON; NILS‐GEORG L. ASP; MARGARETHA I. JÄGERSTAD;

Binding of 14C‐Labeled Food Mutagens (IQ, MeIQ, MeIQx) by Dietary Fiber In Vitro

Abstract

ABSTRACTBinding of three mutagens, known to occur in fried or broiled foods, by thirteen different types of dietary fiber was investigated in vitro. Nonspecific binding by other food polymers was minimized by using protease and amylase treatment. Water‐insoluble fiber components were responsible for most of the binding capacity. Generally, a slightly larger proportion of 2‐amino‐3,4‐dimethylimidazo [4,5‐f]quinoline (MeIQ) than of 2‐amino‐3‐methylimidazo [4,5‐f]quinoline (IQ) and 2‐amino‐3,8‐dimethylimidazo] ‐4,5‐f]quinoxaline (MeIQx) was bound. There was a significant correlation between Klason lignin content and binding of mutagens. Optimum pH for binding was between 4 and 6. Dietary fiber from sorghum had the highest binding capacity, which could be due to the presence of a large Klason lignin fraction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Average