Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2013 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

USP4 Positively Regulates RIG-I-Mediated Antiviral Response through Deubiquitination and Stabilization of RIG-I

Authors: Chengjiang Gao; Peng Wang; Shangru Yang; Wei Zhao; Kai Zhao; Xueying Zhao; Meng Zhang; +1 Authors

USP4 Positively Regulates RIG-I-Mediated Antiviral Response through Deubiquitination and Stabilization of RIG-I

Abstract

ABSTRACT Protein ubiquitination plays an essential role in the regulation of retinoic acid-inducible gene I (RIG-I) activation and the antiviral immune response. However, the function of the opposite process of deubiquitination in RIG-I activation remains elusive. In this study, we have identified the deubiquitinating enzyme ubiquitin-specific protease 4 (USP4) as a new regulator for RIG-I activation through deubiquitination and stabilization of RIG-I. USP4 expression was attenuated after virus-induced RIG-I activation. Overexpression of USP4 significantly enhanced RIG-I protein expression and RIG-I-triggered beta interferon (IFN-β) signaling and, at the same time, inhibited vesicular stomatitis virus (VSV) replication. Small interfering RNA (siRNA) knockdown of USP4 expression had an opposite effect. Furthermore, USP4 was found to interact with RIG-I and remove K48-linked polyubiquitination chains from RIG-I. Therefore, we identified USP4 as a new positive regulator for RIG-I that acts through deubiquitinating K48-linked ubiquitin chains and stabilizing RIG-I.

Related Organizations
Keywords

Ubiquitin, Vesiculovirus, Virus Replication, Cell Line, DEAD-box RNA Helicases, Proteolysis, DEAD Box Protein 58, Humans, Ubiquitin-Specific Proteases, Receptors, Immunologic, Ubiquitin Thiolesterase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 10%
bronze