Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2013 . Peer-reviewed
Data sources: Crossref
Development
Article . 2013
versions View all 2 versions

TEAD4 establishes the energy homeostasis essential for blastocoel formation

Authors: Kotaro J. Kaneko; Melvin L. DePamphilis;

TEAD4 establishes the energy homeostasis essential for blastocoel formation

Abstract

It has been suggested that during mouse preimplantation development, the zygotically expressed transcription factor TEAD4 is essential for specification of the trophectoderm lineage required for producing a blastocyst. Here we show that blastocysts can form without TEAD4 but that TEAD4 is required to prevent oxidative stress when blastocoel formation is accompanied by increased oxidative phosphorylation that leads to the production of reactive oxygen species (ROS). Both two-cell and eight-cell Tead4-/- embryos developed into blastocysts when cultured under conditions that alleviate oxidative stress, and Tead4-/- blastocysts that formed under these conditions expressed trophectoderm-associated genes. Therefore, TEAD4 is not required for specification of the trophectoderm lineage. Once the trophectoderm was specified, Tead4 was not essential for either proliferation or differentiation of trophoblast cells in culture. However, ablation of Tead4 in trophoblast cells resulted in reduced mitochondrial membrane potential. Moreover, Tead4 suppressed ROS in embryos and embryonic fibroblasts. Finally, ectopically expressed TEAD4 protein could localize to the mitochondria as well as to the nucleus, a property not shared by other members of the TEAD family. These results reveal that TEAD4 plays a crucial role in maintaining energy homeostasis during preimplantation development.

Related Organizations
Keywords

Membrane Potential, Mitochondrial, Reverse Transcriptase Polymerase Chain Reaction, Embryonic Development, Muscle Proteins, TEA Domain Transcription Factors, Fibroblasts, Immunohistochemistry, Trophoblasts, DNA-Binding Proteins, Mice, Blastocyst, Animals, Homeostasis, Energy Metabolism, Reactive Oxygen Species, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze