Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Therapy: N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Therapy: Nucleic Acids
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Therapy: Nucleic Acids
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Therapy: Nucleic Acids
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Compatibility and Fidelity of Mirror-Image Thymidine in Transcription Events by T7 RNA Polymerase

Authors: Qingju Liu; Yongqi Ke; Yuhe Kan; Xinjing Tang; Xiangjun Li; Yujian He; Li Wu;

Compatibility and Fidelity of Mirror-Image Thymidine in Transcription Events by T7 RNA Polymerase

Abstract

Due to highly enzymatic d-stereoselectivity, l-nucleotides (l-2'-deoxynucleoside 5'-triphosphates [l-dNTPs]) are not natural targets of polymerases. In this study, we synthesized series of l-thymidine (l-T)-modified DNA strands and evaluated the processivity of nucleotide incorporation for transcription by T7 RNA polymerase (RNAP) with an l-T-containing template. When single l-T was introduced into the transcribed region, transcription proceeded to afford the full-length transcript with different efficiencies. However, introduction of l-T into the non-transcribed region did not exhibit a noticeable change in the transcription efficiency. Surprisingly, when two consecutive or internal l-Ts were introduced into the transcribed region, no transcripts were detected. Compared to natural template, significant lags in NTP incorporation into the template T+4/N and T+7/N (where the number corresponds to the site of l-T position, and + means downstream of the transcribed region) were detected by kinetic analysis. Furthermore, affinity of template T+4/N was almost the same with T/N, whereas affinity of T+7/N was apparently increased. Furthermore, no mismatch opposite to l-T in the template was detected in transcription reactions via gel fidelity analysis. These results demonstrate the effects of chiral l-T in DNA on the efficiency and fidelity of RNA transcription mediated by T7 RNAP, which provides important knowledge about how mirror-image thymidine perturbs the flow of genetic information during RNA transcription and development of diseases caused by gene mutation.

Related Organizations
Keywords

self-repair, l-thymidine, Therapeutics. Pharmacology, RM1-950, transcription, mismatch, Article, T7 RNA polymerase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold