Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2002
Data sources: Radboud Repository
versions View all 4 versions

Coupling of Cell Energetics with Membrane Metabolic Sensing

Authors: Abraham, M.R.; Selivanov, V.A.; Hodgson, D.M.; Pucar, D.; Zingman, L.V.; Wieringa, B.; Dzeja, P.P.; +2 Authors

Coupling of Cell Energetics with Membrane Metabolic Sensing

Abstract

Transduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (K(ATP)) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals. Creatine kinase phosphotransfer, captured by 18O-assisted 31P NMR, coordinated tightly with ATP turnover, reflecting the cellular energetic status. The dynamics of high energy phosphoryl transfer through the creatine kinase relay permitted a high fidelity transmission of energetic signals into the submembrane compartment synchronizing K(ATP) channel activity with cell metabolism. Knock-out of the creatine kinase M-CK gene disrupted signal delivery to K(ATP) channels and generated a cellular phenotype with increased electrical vulnerability. Thus, in the compartmentalized cell environment, phosphotransfer systems shunt diffusional barriers and secure regimented signal transduction integrating metabolic sensors with the cellular energetic network.

Related Organizations
Keywords

Mice, Knockout, Magnetic Resonance Spectroscopy, Potassium Channels, Myocardium, Cell Membrane, Creatine Kinase, MM Form, Heart, Study of abnormal differentiation and transformation processes in heritable and acquired disorders with the use of cell and animal models, Models, Biological, Membrane Potentials, Adenosine Diphosphate, Isoenzymes, Kinetics, Mice, Adenosine Triphosphate, Bestudering van abnormale differentiatie en transformatieprocessen bij erfelijke of verworven aandoeningen m.b.v. cel- en diermodellen, Animals, Energy Metabolism, Creatine Kinase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    136
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
136
Top 10%
Top 10%
Top 10%
Green
gold