Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carcinogenesisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carcinogenesis
Article
Data sources: UnpayWall
Carcinogenesis
Article . 2004 . Peer-reviewed
Data sources: Crossref
Carcinogenesis
Article . 2007
versions View all 2 versions

Tobacco smoke induces CYP1B1 in the aerodigestive tract

Authors: Jeffrey L. Port; Paul M. Heerdt; Kentaro Yamaguchi; Craig B. Marcus; Andrew J. Dannenberg; Levy Kopelovich; Baoheng Du; +4 Authors

Tobacco smoke induces CYP1B1 in the aerodigestive tract

Abstract

Several members of the P450 family, including cytochrome P450 1B1 (CYP1B1), can convert tobacco smoke (TS) procarcinogens, including benzo[a]pyrene (B[a]P), to carcinogenic intermediates. In this study we investigated the effects of TS condensate and B[a]P on the expression of CYP1B1 in vitro and in vivo. CYP1B1 mRNA and protein were induced by both TS condensate and B[a]P in cell lines derived from the human aerodigestive tract. Treatment with TS condensate stimulated binding of the aryl hydrocarbon receptor (AhR) to an oligonucleotide containing a canonical xenobiotic response element (XRE) site and induced XRE-luciferase activity. These findings are consistent with prior evidence that polycyclic aromatic hydrocarbons, known ligands of the AhR, stimulate CYP1B1 transcription by an XRE-dependent mechanism. To determine whether these in vitro findings applied in vivo, both murine and human studies were carried out. Short-term exposure to TS induced CYP1B1 in the tongue, esophagus, lung and colon of experimental mice. In contrast, CYP1B1 was not induced by TS in the aorta of these mice. Levels of CYP1B1 mRNA were also elevated in the bronchial mucosa of human tobacco smokers versus never smokers (P < 0.05). Taken together, these results support a role for CYP1B1 in TS-induced carcinogenesis in the aerodigestive tract.

Keywords

Lung Neoplasms, Respiratory System, Smoking, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Enzyme Induction, Smoke, Cytochrome P-450 CYP1B1, Benzo(a)pyrene, Humans, Aryl Hydrocarbon Hydroxylases, RNA, Messenger, Digestive System

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
bronze