Powered by OpenAIRE graph

Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast

Authors: Wendy V, Gilbert; Kaihong, Zhou; Tamira K, Butler; Jennifer A, Doudna;

Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast

Abstract

Cellular internal ribosome entry sites (IRESs) are untranslated segments of mRNA transcripts thought to initiate protein synthesis in response to environmental stresses that prevent canonical 5′ cap–dependent translation. Although numerous cellular mRNAs are proposed to have IRESs, none has a demonstrated physiological function or molecular mechanism. Here we show that seven yeast genes required for invasive growth, a developmental pathway induced by nutrient limitation, contain potent IRESs that require the initiation factor eIF4G for cap-independent translation. In contrast to the RNA structure-based activity of viral IRESs, we show that an unstructured A-rich element mediates internal initiation via recruitment of the poly(A) binding protein (Pab1) to the 5′ untranslated region (UTR) of invasive growth messages. A 5′UTR mutation that impairs IRES activity compromises invasive growth, which indicates that cap-independent translation is required for physiological adaptation to stress.

Related Organizations
Keywords

RNA Caps, Saccharomyces cerevisiae Proteins, Genes, Fungal, Nuclear Proteins, RNA, Fungal, Saccharomyces cerevisiae, Adaptation, Physiological, Poly(A)-Binding Proteins, Glucose, Protein Biosynthesis, Trans-Activators, Nucleic Acid Conformation, RNA, Messenger, 5' Untranslated Regions, Eukaryotic Initiation Factor-4G, Peptide Chain Initiation, Translational, Poly A

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    194
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
194
Top 1%
Top 10%
Top 1%