Linx Mediates Interaxonal Interactions and Formation of the Internal Capsule
Linx Mediates Interaxonal Interactions and Formation of the Internal Capsule
During the development of forebrain connectivity, ascending thalamocortical and descending corticofugal axons first intermingle at the pallial-subpallial boundary to form the internal capsule (IC). However, the identity of molecular cues that guide these axons remains largely unknown. Here, we show that the transmembrane protein Linx is robustly expressed in the prethalamus and lateral ganglionic eminence-derived corridor and on corticofugal axons, but not on thalamocortical axons, and that mice with a null mutation of Linx exhibit a complete absence of the IC. Moreover, regional inactivation of Linx either in the prethalamus and LGE or in the neocortex leads to a failure of IC formation. Furthermore, Linx binds to thalamocortical projections, and it promotes outgrowth of thalamic axons. Thus, Linx guides the extension of thalamocortical axons in the ventral forebrain, and subsequently, it mediates reciprocal interactions between thalamocortical and corticofugal axons to form the IC.
- Harvard University United States
- JOHNS HOPKINS UNIVERSITY
- Kobe University Japan
- Harvard Medical School United States
- Johns Hopkins Medicine United States
Mice, Knockout, Neuroscience(all), Nerve Tissue Proteins, Axons, Mice, Inbred C57BL, Mice, Organ Culture Techniques, Prosencephalon, Thalamus, Internal Capsule, Neural Pathways, Animals, Protein Binding
Mice, Knockout, Neuroscience(all), Nerve Tissue Proteins, Axons, Mice, Inbred C57BL, Mice, Organ Culture Techniques, Prosencephalon, Thalamus, Internal Capsule, Neural Pathways, Animals, Protein Binding
49 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
