A 46-Amino Acid Segment in Phosphodiesterase-5 GAF-B Domain Provides for High Vardenafil Potency over Sildenafil and Tadalafil and Is Involved in Phosphodiesterase-5 Dimerization
pmid: 16926278
A 46-Amino Acid Segment in Phosphodiesterase-5 GAF-B Domain Provides for High Vardenafil Potency over Sildenafil and Tadalafil and Is Involved in Phosphodiesterase-5 Dimerization
Phosphodiesterase-5 (PDE5) contains a catalytic domain (C domain) that hydrolyzes cGMP and a regulatory domain (R domain) that contains two mammalian cGMP-binding phosphodiesterase, Anabaena adenylyl cyclases, Escherichia coli FhlAs (GAFs) (A and B) and a phosphorylation site for cyclic nucleotide-dependent protein kinases (cNPKs). Binding of cGMP to GAF-A increases cNPK phosphorylation of PDE5 and improves catalytic site affinity for cGMP or inhibitors. GAF-B contributes to dimerization of PDE5, inhibition of cGMP binding to GAF-A, and sequestration of the phosphorylation site. To probe potential PDE5 R domain effects on catalytic site affinity for certain inhibitors, four N-terminal truncation mutants were generated: PDE5Delta1-321 contained GAF-B domain, C domain, and the sequence between GAF-A and -B; PDE5Delta1-419 contained GAF-B and C domain; PDE5Delta1-465 contained the C domain and the C-terminal portion of GAF-B; and PDE5Delta1-534 contained only C domain. Truncated proteins with a complete GAF-B were dimers, but those lacking the N-terminal 46 amino acids of GAF-B were monomers, indicating that these residues are vital for GAF-B-mediated PDE5 dimerization. K(m) values of the mutants for cGMP were similar to that of full-length PDE5. All PDE5 constructs had similar affinities for 3-isobutyl-1-methylxanthine, sildenafil, tadalafil, and UK-122764, but mutants containing a complete GAF-B had 7- to 18-fold higher affinity for vardenafil-based compounds compared with those lacking a complete GAF-B. This indicated that the N-terminal 46 amino acids in GAF-B are required for high vardenafil potency. This is the first evidence that PDE5 R domain, and GAF-B in particular, influences affinity and selectivity of the catalytic site for certain classes of inhibitors.
- Vanderbilt University United States
Cyclic Nucleotide Phosphodiesterases, Type 5, Binding Sites, Phosphodiesterase Inhibitors, Imidazoles, Piperazines, Sildenafil Citrate, Protein Structure, Tertiary, Molecular Weight, Inhibitory Concentration 50, Kinetics, Structure-Activity Relationship, 3',5'-Cyclic-GMP Phosphodiesterases, Purines, Centrifugation, Density Gradient, Humans, Mutant Proteins, Amino Acid Sequence, Holoenzymes, Dimerization, Carbolines
Cyclic Nucleotide Phosphodiesterases, Type 5, Binding Sites, Phosphodiesterase Inhibitors, Imidazoles, Piperazines, Sildenafil Citrate, Protein Structure, Tertiary, Molecular Weight, Inhibitory Concentration 50, Kinetics, Structure-Activity Relationship, 3',5'-Cyclic-GMP Phosphodiesterases, Purines, Centrifugation, Density Gradient, Humans, Mutant Proteins, Amino Acid Sequence, Holoenzymes, Dimerization, Carbolines
7 Research products, page 1 of 1
- 2004IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
