Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RNA Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA Biology
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA Biology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA Biology
Article . 2014
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Regulation ofDscamexon 17 alternative splicing by steric hindrance in combination with RNA secondary structures

Authors: Yongfeng Jin; Yun Yang; Yuan Yue; Wenjing Zhang; Feng Shi; Ran Chen; Guoli Li; +1 Authors

Regulation ofDscamexon 17 alternative splicing by steric hindrance in combination with RNA secondary structures

Abstract

The gene Down syndrome cell adhesion molecule (Dscam) potentially encodes 38 016 distinct isoforms in Drosophila melanogaster via mutually exclusive splicing. Here we reveal a combinatorial mechanism of regulation of Dscam exon 17 mutually exclusive splicing through steric hindrance in combination with RNA secondary structure. This mutually exclusive behavior is enforced by steric hindrance, due to the close proximity of the exon 17.2 branch point to exon 17.1 in Diptera, and the interval size constraint in non-Dipteran species. Moreover, intron-exon RNA structures are evolutionarily conserved in 36 non-Drosophila species of six distantly related orders (Diptera, Lepidoptera, Coleoptera, Hymenoptera, Hemiptera, and Phthiraptera), which regulates the selection of exon 17 variants via masking the splice site. By contrast, a previously uncharacterized RNA structure specifically activated exon 17.1 by bringing splice sites closer together in Drosophila, while the other moderately suppressed exon 17.1 selection by hindering the accessibility of polypyrimidine sequences. Taken together, these data suggest a phylogeny of increased complexity in regulating alternative splicing of Dscam exon 17 spanning more than 300 million years of insect evolution. These results also provide models of the regulation of alternative splicing through steric hindrance in combination with dynamic structural codes.

Related Organizations
Keywords

Models, Molecular, Insecta, Base Sequence, Molecular Sequence Data, Exons, Introns, Evolution, Molecular, Alternative Splicing, Gene Expression Regulation, Animals, Drosophila Proteins, Insect Proteins, Nucleic Acid Conformation, Protein Isoforms, Drosophila, RNA Splice Sites, Cell Adhesion Molecules, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Average
gold