Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Mechanical Stress Is Required for High-Level Expression of Connective Tissue Growth Factor

Authors: Christof, Schild; Beat, Trueb;

Mechanical Stress Is Required for High-Level Expression of Connective Tissue Growth Factor

Abstract

We used gene array technology to analyze differences in gene expression between mechanically stressed and relaxed fibroblasts. A number of stress-responsive genes that showed a two- to sixfold difference in their relative expression were identified. Connective tissue growth factor (CTGF) was among those genes that showed the most striking up-regulation by mechanical stress. Its regulation occurred at the transcriptional level and was reversible. A new steady state level of CTGF mRNA was reached within less than 6 h after stress relaxation. Mechanical stress was absolutely required for sustained high-level expression; TGF-beta, which is also known to stimulate CTGF synthesis, was not sufficient on its own. Experiments with specific inhibitors suggested that a protein kinase and a tyrosine phosphatase were involved in the transduction of the mechanical stimulus to gene expression. Since CTGF controls the synthesis of several extracellular matrix proteins, it is likely that this growth factor is responsible for the increased synthesis of collagen I and other matrix proteins in stressed fibroblasts.

Related Organizations
Keywords

Gene Expression Profiling, Connective Tissue Growth Factor, Fibroblasts, Cell Line, Immediate-Early Proteins, Kinetics, Gene Expression Regulation, Transforming Growth Factor beta, Cyclic AMP, Humans, Intercellular Signaling Peptides and Proteins, RNA, Messenger, Stress, Mechanical, Protein Tyrosine Phosphatases, Growth Substances, Protein Kinase Inhibitors, Protein Kinases, Oligonucleotide Array Sequence Analysis, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 10%
Top 10%
Top 10%