Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation

Authors: Fleming, Alastair B.; Kao, Cheng-Fu; Hillyer, Cory; Pikaart, Michael; Osley, Mary Ann;

H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation

Abstract

The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Transcription, Genetic, Lysine, Ubiquitination, Cell Cycle Proteins, Cell Biology, Saccharomyces cerevisiae, Methylation, Chromatin, Nucleosomes, Histones, Galactokinase, Kinetics, RNA Polymerase II, Transcriptional Elongation Factors, Molecular Biology, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    304
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
304
Top 1%
Top 10%
Top 1%
hybrid