Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Immuno...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Immunology
Article . 2021 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Dynamic control of nucleic-acid-sensing Toll-like receptors by the endosomal compartment

Authors: Kensuke, Miyake; Shin-Ichiroh, Saitoh; Ryutaro, Fukui; Takuma, Shibata; Ryota, Sato; Yusuke, Murakami;

Dynamic control of nucleic-acid-sensing Toll-like receptors by the endosomal compartment

Abstract

Abstract Nucleic-acid (NA)-sensing Toll-like receptors (TLRs) are synthesized in the endoplasmic reticulum and mature with chaperones, such as Unc93B1 and the protein associated with TLR4 A (PRAT4A)–gp96 complex. The TLR–Unc93B1 complexes move to the endosomal compartment, where proteases such as cathepsins activate their responsiveness through proteolytic cleavage of the extracellular domain of TLRs. Without proteolytic cleavage, ligand-dependent dimerization of NA-sensing TLRs is prevented by the uncleaved loop in the extracellular domains. Additionally, the association of Unc93B1 inhibits ligand-dependent dimerization of TLR3 and TLR9 and, therefore, Unc93B1 is released from these TLRs before dimerization. Ligand-activated NA-sensing TLRs induce the production of pro-inflammatory cytokines and act on the endosomal compartment to initiate anterograde trafficking to the cell periphery for type I interferon production. In the endosomal compartment, DNA and RNA are degraded by DNases and RNases, respectively, generating degradation products. DNase 2A and RNase T2 generate ligands for TLR9 and TLR8, respectively. In this mechanism, DNases and RNases control innate immune responses to NAs in endosomal compartments. NA-sensing TLRs and the endosomal compartment work together to monitor environmental cues through endosomes and decide to launch innate immune responses.

Related Organizations
Keywords

Nucleic Acids, Toll-Like Receptors, Animals, Humans, Endosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
hybrid