Tethering DNA Damage Checkpoint Mediator Proteins Topoisomerase IIβ-binding Protein 1 (TopBP1) and Claspin to DNA Activates Ataxia-Telangiectasia Mutated and RAD3-related (ATR) Phosphorylation of Checkpoint Kinase 1 (Chk1)
Tethering DNA Damage Checkpoint Mediator Proteins Topoisomerase IIβ-binding Protein 1 (TopBP1) and Claspin to DNA Activates Ataxia-Telangiectasia Mutated and RAD3-related (ATR) Phosphorylation of Checkpoint Kinase 1 (Chk1)
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.
- University of North Carolina at Chapel Hill United States
Tumor Suppressor Proteins, DNA, Single-Stranded, Nuclear Proteins, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Protein Serine-Threonine Kinases, Recombinant Proteins, DNA-Binding Proteins, Enzyme Activation, Mice, Checkpoint Kinase 1, Escherichia coli, NIH 3T3 Cells, Animals, Humans, Phosphorylation, Carrier Proteins, Protein Kinases, Adaptor Proteins, Signal Transducing, DNA Damage
Tumor Suppressor Proteins, DNA, Single-Stranded, Nuclear Proteins, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Protein Serine-Threonine Kinases, Recombinant Proteins, DNA-Binding Proteins, Enzyme Activation, Mice, Checkpoint Kinase 1, Escherichia coli, NIH 3T3 Cells, Animals, Humans, Phosphorylation, Carrier Proteins, Protein Kinases, Adaptor Proteins, Signal Transducing, DNA Damage
30 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
