Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Structural & Molecular Biology
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Structural & Molecular Biology
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains

Authors: Hota, Swetansu K; Bhardwaj, Saurabh K; Deindl, Sebastian; Lin, Yuan-chi; Zhuang, Xiaowei; Bartholomew, Blaine;

Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains

Abstract

The ISWI family of ATP-dependent chromatin remodelers represses transcription by changing nucleosome positions. ISWI regulates nucleosome positioning by requiring a minimal length of extranucleosomal DNA for moving nucleosomes. ISW2 from Saccharomyces cerevisiae, a member of the ISWI family, has a conserved domain called SLIDE (SANT-like ISWI domain) that binds to extranucleosomal DNA ~19 base pairs from the edge of nucleosomes. Loss of SLIDE binding does not perturb binding of the ATPase domain or the initial movement of DNA inside of nucleosomes. Not only is extranucleosomal DNA required to help recruit ISW2, but also the interactions of the SLIDE domain with extranucleosomal DNA are functionally required to move nucleosomes.

Keywords

570, Protein Structure, Biomedical and clinical sciences, Blotting, Western, Biophysics, 610, Centrifugation, Photoaffinity Labels, Saccharomyces cerevisiae, Medical and Health Sciences, Article, Gene Expression Regulation, Fungal, Genetics, Centrifugation, Density Gradient, Fluorescence Resonance Energy Transfer, DNA, Fungal, Adenosine Triphosphatases, Blotting, Hydroxyl Radical, DNA, Biological Sciences, Chromatin Assembly and Disassembly, Nucleosomes, Protein Structure, Tertiary, Biological sciences, Density Gradient, Fungal, Gene Expression Regulation, Chemical sciences, Chemical Sciences, Biochemistry and Cell Biology, Western, Tertiary, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Green
hybrid