Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pediatric Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pediatric Research
Article
Data sources: UnpayWall
Pediatric Research
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Axonemal Localization of the Dynein Component DNAH5 Is Not Altered in Secondary Ciliary Dyskinesia

Authors: Olbrich, Heike; Horváth, Judit; Fekete, Andrea; Loges, Niki Tomas; Storm van's Gravesande, Karin; Blum, Andreas; Hörmann, Karl; +1 Authors

Axonemal Localization of the Dynein Component DNAH5 Is Not Altered in Secondary Ciliary Dyskinesia

Abstract

Primary ciliary dyskinesia (PCD) is a heterogeneous genetic disorder characterized by recurrent airway infections and situs inversus in half of affected individuals. Diagnosis currently relies on demonstration of abnormal ciliary ultrastructure or altered ciliary beat. Alterations encountered in secondary ciliary dyskinesia (SCD) caused by inflammation often complicate the diagnostic workup. We have recently shown that in respiratory epithelial cells from PCD patients with outer dynein arm defects the dynein protein DNAH5 is mislocalized and either completely or partially absent from the ciliary axoneme. In this study, we addressed the question whether SCD might affect axonemal DNAH5 localization in respiratory cells. To induce SCD in vitro, we treated primary human respiratory epithelial cell cultures with interleukin-13 (IL-13). Ciliary function and ultrastructure were assessed by high-speed videomicroscopy and transmission electron microscopy, respectively. For in vivo localization of DNAH5, we performed nasal brushing biopsies in patients with evidence of SCD. Expression of DNAH5 was analyzed by immunofluorescence microscopy. IL-13-treated cells showed evidence of SCD. Ciliary beat frequency was significantly reduced and ultrastructural analyses showed axonemal disorganization compared with control cells. High-resolution immunofluorescence studies of respiratory epithelial cells with SCD identified in vitro and in vivo normal axonemal DNAH5 localization. DNAH5 localization is not altered by SCD, indicating a high potential for immunofluorescence analysis as a novel diagnostic tool in PCD.

Keywords

Interleukin-13, Dyneins, Humans, Epithelial Cells, Axonemal Dyneins, Cilia, Respiratory Mucosa, Cells, Cultured, Ciliary Motility Disorders

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
bronze