Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis

Authors: Eleonora, Dondossola; Roberto, Rangel; Liliana, Guzman-Rojas; Elena M, Barbu; Hitomi, Hosoya; Lisa S, St John; Jeffrey J, Molldrem; +4 Authors

CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis

Abstract

Significance The progression of many solid tumors is associated with increased vascularization. We previously recognized involvement in tumor development and angiogenesis of tumor stromal cells expressing the CD13 protease aminopeptidase. The basic biological concept of participation of nontumor cells in the cancer stroma microenvironment is strengthened in the present study by our finding that a CD11b + CD13 + myeloid subset of bone marrow-derived cells affects pericyte biology and angiogenesis and thereby influences tumor growth and metastasis. Therapeutic implications of the identification of specific CD11 + CD13 + myeloid bone marrow-derived cells as participants in the mechanism of tumor angiogenesis merit further investigation.

Keywords

Mice, Knockout, Mice, Inbred BALB C, CD11b Antigen, Neovascularization, Pathologic, Bone Marrow Cells, Neoplasms, Experimental, CD13 Antigens, Mice, Cell Line, Tumor, Animals, Angiogenesis Inducing Agents, Myeloid Cells, Neoplasm Metastasis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research