Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Society for Mass Spectrometry
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Hydrogen-Deuterium Exchange and Hydroxyl Radical Footprinting for Mapping Hydrophobic Interactions of Human Bromodomain with a Small Molecule Inhibitor

Authors: Ke Sherry, Li; Elizabeth T, Schaper Bergman; Brett R, Beno; Richard Y-C, Huang; Ekaterina, Deyanova; Guodong, Chen; Michael L, Gross;

Hydrogen-Deuterium Exchange and Hydroxyl Radical Footprinting for Mapping Hydrophobic Interactions of Human Bromodomain with a Small Molecule Inhibitor

Abstract

Mass spectrometry (MS)-based protein footprinting, a valuable structural tool in mapping protein-ligand interaction, has been extensively applied to protein-protein complexes, showing success in mapping large interfaces. Here, we utilized an integrated footprinting strategy incorporating both hydrogen-deuterium exchange (HDX) and hydroxyl radical footprinting (i.e., fast photochemical oxidation of proteins (FPOP)) for molecular-level characterization of the interaction of human bromodomain-containing protein 4 (BRD4) with a hydrophobic benzodiazepine inhibitor. HDX does not provide strong evidence for the location of the binding interface, possibly because the shielding of solvent by the small molecule is not large. Instead, HDX suggests that BRD4 appears to be stabilized by showing a modest decrease in dynamics caused by binding. In contrast, FPOP points to a critical binding region in the hydrophobic cavity, also identified by crystallography, and, therefore, exhibits higher sensitivity than HDX in mapping the interaction of BRD4 with compound 1. In the absence or under low concentrations of the radical scavenger, FPOP modifications on Met residues show significant differences that reflect the minor change in protein conformation. This problem can be avoided by using a sufficient amount of proper scavenger, as suggested by the FPOP kinetics directed by a dosimeter of the hydroxyl radical.

Keywords

Models, Molecular, Benzodiazepines, Hydroxyl Radical, Protein Conformation, Tandem Mass Spectrometry, Deuterium Exchange Measurement, Humans, Cell Cycle Proteins, Hydrophobic and Hydrophilic Interactions, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze