Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1994 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10.

Authors: R, Dickson; B, Larsen; P V, Viitanen; M B, Tormey; J, Geske; R, Strange; L T, Bemis;

Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10.

Abstract

An intact mouse mitochondrial chaperonin 10 has been cloned, sequenced, and overexpressed in Escherichia coli as a fusion protein harboring an oligohistidine tail at its COOH terminus. The latter was added to simplify protein purification. The purified protein is free of contaminating groES from the bacterial host cells. Edman degradation reveals that the initiator Met residue of the recombinant protein is removed in vivo, similar to the authentic chaperonin 10 purified from rat liver mitochondria. However, in contrast to the latter, the amino-terminal Ala residue of the recombinant protein is not acetylated; the molecular mass determined by electrospray ionization mass spectrometry is 12,350.9 +/- 2.6 daltons, in agreement with that predicted for the nonacetylated protein (12,351.2 daltons). Facilitated protein folding experiments with ribulose-biphosphate carboxylase, under "nonpermissive" in vitro conditions, demonstrate that the recombinant protein is fully functional with groEL. Thus, both the initial rates of protein folding and final yields observed with this heterologous combination are virtually identical to those obtained with groEL and groES. More important, like the authentic protein purified from mitochondria, the recombinant mitochondrial chaperonin 10, but not groES, is functionally compatible with the heptameric chaperonin 60 of mammalian mitochondria.

Related Organizations
Keywords

Protein Folding, Base Sequence, Sequence Homology, Amino Acid, Ribulose-Bisphosphate Carboxylase, Molecular Sequence Data, Acetylation, Chaperonin 60, Protein Engineering, Mass Spectrometry, Recombinant Proteins, Mitochondria, Mice, Chaperonin 10, Escherichia coli, Animals, Amino Acid Sequence, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
gold