Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2006 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2006
versions View all 2 versions

Role of the CXCL12/CXCR4 Axis in Peritoneal Carcinomatosis of Gastric Cancer

Authors: Yurika Saitoh; Hiroaki Sakurai; Osamu Yoshie; Kazuo Yasumoto; Atsuhiro Kawashima; Ikuo Saiki; Kanna Shinohara; +5 Authors

Role of the CXCL12/CXCR4 Axis in Peritoneal Carcinomatosis of Gastric Cancer

Abstract

Abstract Peritoneal carcinomatosis is a frequent cause of death in patients with advanced gastric carcinoma. Because chemokines are now considered to play an important role in the metastasis of various malignancies, we hypothesized that they may be involved in the development of peritoneal carcinomatosis by gastric carcinoma. Human gastric carcinoma cell lines, which were all highly efficient in generating malignant ascites in nude mice upon i.p. inoculation, selectively expressed CXCR4 mRNA and protein. In particular, NUGC4 cells expressed CXCR4 mRNA at high levels and showed vigorous migratory responses to its ligand CXCL12. CXCL12 enhanced proliferation and rapid increases in phosphorylation of protein kinase B/Akt and extracellular signal-regulated kinase of NUGC4 cells. We also showed that AMD3100 (a specific CXCR4 antagonist) effectively reduced tumor growth and ascitic fluid formation in nude mice inoculated with NUGC4 cells. Additionally, we examined human clinical samples. Malignant ascitic fluids from patients with peritoneal carcinomatosis contained high concentrations of CXCL12 (4.67 ng/mL). Moreover, immunohistochemical analysis showed that 22 of 33 primary gastric tumors with peritoneal metastasis were positive for CXCR4 expression (67%), whereas only 4 of 16 with other distant metastasis were positive (25%). Notably, 22 of 26 CXCR4-expressing primary tumors developed peritoneal metastases (85%). CXCR4 positivity of primary gastric carcinomas significantly correlated with the development of peritoneal carcinomatosis (P < 0.001). Collectively, our results strongly suggest that the CXCR4/CXC12 axis plays an important role in the development of peritoneal carcinomatosis from gastric carcinoma. Thus, CXCR4 may be a potential therapeutic target for peritoneal carcinomatosis of gastric carcinoma. (Cancer Res 2006; 66(4): 2181-7)

Keywords

Benzylamines, Receptors, CXCR4, Carcinoma, Transplantation, Heterologous, Ascites, Mice, Nude, Cyclams, Chemokine CXCL12, Mice, Heterocyclic Compounds, Stomach Neoplasms, Cell Line, Tumor, Animals, Humans, Female, Chemokines, CXC, Neoplasm Transplantation, Peritoneal Neoplasms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    204
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
204
Top 10%
Top 1%
Top 1%
bronze