Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Differential Regulation of Sentrinized Proteins by a Novel Sentrin-specific Protease

Authors: L, Gong; S, Millas; G G, Maul; E T, Yeh;

Differential Regulation of Sentrinized Proteins by a Novel Sentrin-specific Protease

Abstract

Sentrin-1, also called SUMO-1, is a protein of 101 residues that is distantly related to ubiquitin and another ubiquitin-like protein, NEDD8. Here we report the cloning of a novel sentrin-specific protease, SENP1, which has no homology to the known de-ubiquitinating enzymes or ubiquitin C-terminal hydrolases. However, SENP1 is distantly related to the yeast Smt3-specific protease, Ulp1. A COS cell expression system was used to demonstrate the activity of SENP1 in vivo. When HA-tagged sentrin-1 was co-expressed with SENP1, the higher molecular weight sentrin-1 conjugates were completely removed. Surprisingly, the major sentrinized band at 90 kDa remained intact. The disappearance of the high molecular weight sentrin-1 conjugates also coincided with an increase in free sentrin-1 monomers. SENP1 is also active against proteins modified by sentrin-2, but not those modified by ubiquitin or NEDD8. In addition, sentrinized PML, a tumor suppressor protein that resides in the nucleus, was selectively affected by SENP1, whereas sentrinized RanGAP1, which is associated with the cytoplasmic fibrils of the nuclear pore complex, remained intact. The inability of SENP1 to process sentrinized RanGAP1 in vivo is most likely due to its nuclear localization because SENP1 is active against sentrinized RanGAP1 in vitro. The identification of a nuclear-localized, sentrin-specific protease will provide a unique tool to study the role of sentrinization in the biological function of PML and in the pathogenesis of acute promyelocytic leukemia.

Keywords

DNA, Complementary, Molecular Sequence Data, SUMO-1 Protein, Substrate Specificity, Repressor Proteins, Cysteine Endopeptidases, COS Cells, Endopeptidases, Animals, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, Ubiquitins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    258
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
258
Top 1%
Top 1%
Top 1%
gold
Related to Research communities
Cancer Research