Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1
Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1
Significance Expansion of polyglutamine tracts in at least nine proteins causes neurodegeneration. Although the pathology caused by each protein is different, there must be common features of the polyglutamine expansion that contribute to toxicity. We modeled polyglutamine toxicity in yeast by expressing a 103-glutamine expanded fragment of huntingtin (Htt103Q) and screened the yeast genome to identify proteins that alter this toxicity. Surprisingly, our suppressors were proteins containing glutamine- and asparagine-rich segments typical of prion proteins. When we expressed just these segments with Htt103Q, the two proteins formed large, coaggregated particles, and smaller, more toxic aggregated forms were absent. Proteins with such segments may interact with polyQ-expanded proteins and thereby modulate their toxicity. These interaction partners provide targets for therapeutic intervention.
- Harvard University United States
- Howard Hughes Medical Institute United States
- Helmholtz Association of German Research Centres Germany
- Brigham and Women's Faulkner Hospital United States
- Max Delbrück Center for Molecular Medicine Germany
Huntingtin Protein, Microscopy, Confocal, Prions, Humans, Nerve Tissue Proteins, Exons, GPI-Linked Proteins
Huntingtin Protein, Microscopy, Confocal, Prions, Humans, Nerve Tissue Proteins, Exons, GPI-Linked Proteins
46 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
