Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Persistent Synaptic Scaling Independent of AMPA Receptor Subunit Composition

Authors: Haider F, Altimimi; David, Stellwagen;

Persistent Synaptic Scaling Independent of AMPA Receptor Subunit Composition

Abstract

Despite long-standing evidence that the specific intracellular domains of AMPA-type glutamate receptor (AMPAR) subunits are critical for trafficking, it has recently been demonstrated that there is no absolute requirement for any AMPAR subunit for the receptor insertion underlying LTP. It is unclear whether this holds true to other forms of plasticity. Homeostatic synaptic plasticity (HSP) is an important form of negative feedback that provides stability to neuronal networks, and results at least in part from the insertion of AMPARs into glutamatergic synapses following chronic reductions in neuronal activity. Similar to LTP, the GluA1 subunit has been suggested to be the requisite subunit for HSP-induced AMPAR insertion and acute treatment with signaling molecules that underlie some forms of HSP results in the preferential incorporation of GluA2-lacking receptors. However, knockdown experiments have instead implicated a requirement for the GluA2 subunit. Here we re-examined the requirement for specific AMPAR subunit during chronic tetrodotoxin-induced HSP using hippocampal cultures derived from AMPAR subunit knock-out mice. We observed HSP in cultures from GluA1⁻/⁻, GluA2⁻/⁻, and GluA2⁻/⁻ GluA3⁻/⁻ mice, and conclude that, as with LTP, there is no subunit requirement for HSP.

Related Organizations
Keywords

Mice, Knockout, Neuronal Plasticity, Miniature Postsynaptic Potentials, Excitatory Postsynaptic Potentials, Hippocampus, Synaptic Transmission, Mice, Protein Subunits, Synapses, Animals, Receptors, AMPA, Nerve Net, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
bronze