Powered by OpenAIRE graph

Proteomics Identified Overexpression of SET Oncogene Product and Possible Therapeutic Utility of Protein Phosphatase 2A in Alveolar Soft Part Sarcoma

Authors: Daisuke, Kubota; Akihiko, Yoshida; Akira, Kawai; Tadashi, Kondo;

Proteomics Identified Overexpression of SET Oncogene Product and Possible Therapeutic Utility of Protein Phosphatase 2A in Alveolar Soft Part Sarcoma

Abstract

Alveolar soft part sarcoma (ASPS) is an exceedingly rare sarcoma refractory to standard chemotherapy. Although several molecular targeting drugs have been applied for ASPS, their clinical significance has not yet been established, and novel therapeutic strategies have long been required. The aim of this study was to identify proteins aberrantly regulated in ASPS and to clarify their clinical significance. Protein expression profiling of tumor and nontumor tissues from 12 ASPS patients was performed by 2-D difference gel electrophoresis and mass spectrometry. We found that the expression of 145 proteins differed significantly. Among them, further investigation was focused on the SET protein, which has multifunctional roles in cancers. Immunohistochemistry confirmed overexpression of SET in all 15 ASPS cases examined. Gene silencing of SET significantly decreased cell proliferation, invasion, and migration against a background of induced apoptosis. SET is known to be an inhibitor of phosphatase 2A (PP2A), which functions as a tumor suppressor by inhibiting the signal transduction pathway and inducing apoptosis. We found that a PP2A activator, FTY720, decreased cell proliferation through apoptosis. Together, our findings may suggest the possible contribution of SET to the tumor progression and the utility of FTY720 for treatment of ASPS.

Keywords

Adult, Male, Adolescent, Proteome, Fingolimod Hydrochloride, Blotting, Western, Enzyme Activators, Apoptosis, Middle Aged, Immunohistochemistry, Neoplasm Proteins, DNA-Binding Proteins, Cell Movement, Propylene Glycols, Humans, Electrophoresis, Gel, Two-Dimensional, Female, Histone Chaperones, Protein Phosphatase 2, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%