Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2012 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice

Authors: Hye Yeon Choi; Eung-Ryoung Lee; Jin-Hoi Kim; Jung-Hyun Kim; Han-Jung Chae; Ssang-Goo Cho; Sujeong Kim; +5 Authors

Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice

Abstract

Bax Inhibitor-1 (BI-1) is an evolutionally conserved apoptotic suppressor and belongs to the BI-1 family of proteins, which contain BI-1-like transmembrane domains. As their cellular functions and regulatory mechanisms remain incompletely understood, we compared their anti-apoptotic properties. Forced expression of BI-1 resulted in the most effective suppression of stress-induced apoptosis, compared with other family members, together with significant extracellular signal-regulated kinase (ERK)1/2 activation. BI-1-mediated ERK1/2 activation led to the suppression of mitochondria-mediated reactive oxygen species (ROS) production. Involvement of the ERK signaling pathway in BI-1-induced anti-apoptotic effects was confirmed by knockdown studies with ERK- or BI-1-specific siRNA. Moreover, we produced transgenic (TG) mice overexpressing BI-1, and the relationship between ERK1/2 activation and the suppression of ROS production or apoptosis was confirmed in mouse embryonic fibroblast (MEF) cells derived from these mice. Interestingly, we found that BI-1 TG mice showed splenomegaly and abnormal megakaryopoiesis. Taken together, our results suggest that BI-1-induced ERK1/2 activation plays an important role in the modulation of intracellular ROS generation and apoptotic cell death and may also affect autoimmune response.

Country
Korea (Republic of)
Related Organizations
Keywords

DOWN-REGULATION, MAP Kinase Signaling System, PROTEIN-KINASES, Molecular Sequence Data, Down-Regulation, Apoptosis, Mice, Transgenic, Bax inhibitor-1, MECHANISMS, Mice, ENDOPLASMIC-RETICULUM STRESS, MAMMALIAN-CELLS, SUPPRESSOR, Autoimmune response, Animals, Humans, SIGNAL-REGULATED KINASE, Amino Acid Sequence, OXIDATIVE STRESS, Molecular Biology, Etoposide, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, ERK1/2, PATHWAYS, Computational Biology, Membrane Proteins, Cell Biology, Fibroblasts, MAP KINASE, ARABIDOPSIS, BI-1 family protein, Mitochondria, Enzyme Activation, HEK293 Cells, Cytoprotection, PLANT HOMOLOG, Splenomegaly, Reactive Oxygen Species, INDUCED CELL-DEATH

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Average
hybrid