Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Regulation of decapentaplegic expression during Drosophila wing veins pupal development

Authors: Sotillos, Sol; de Celis, Jose F.;

Regulation of decapentaplegic expression during Drosophila wing veins pupal development

Abstract

The differentiation of veins in the Drosophila wing relies on localised expression of decapentaplegic (dpp) in pro-vein territories during pupal development. The expression of dpp in the pupal veins requires the integrity of the shortvein region (shv), localised 5' to the coding region. It is likely that this DNA integrates positive and negative regulatory signals directing dpp transcription during pupal development. Here, we identify a minimal 0.9 kb fragment giving localised expression in the vein L5 and a 0.5 kb fragment giving expression in all longitudinal veins. Using a combination of in vivo expression of reporter genes regulated by shv sequences, in vitro binding assays and sequence comparisons between the shv region of different Drosophila species, we found binding sites for the vein-specific transciption factors Araucan, Knirps and Ventral veinless, as well as binding sites for the Dpp pathway effectors Mad and Med. We conclude that conserved vein-specific enhancers regulated by transcription factors expressed in individual veins collaborate with general vein and intervein regulators to establish and maintain the expression of dpp confined to the veins during pupal development.

Keywords

Embryology, Base Sequence, Molecular Sequence Data, Metamorphosis, Biological, Pupa, Embryonic Development, Gene Expression Regulation, Developmental, Vein differentiation, Gene regulation, Wing, Drosophila melanogaster, Enhancer Elements, Genetic, Sequence Homology, Nucleic Acid, Animals, Drosophila Proteins, Wings, Animal, Drosophila, Decapentaplegic, Developmental Biology, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 42
    download downloads 86
  • 42
    views
    86
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
23
Average
Average
Top 10%
42
86
Green
hybrid