Flotillin-2 deficiency leads to reduced lung metastases in a mouse breast cancer model
doi: 10.1038/onc.2012.499
pmid: 23146906
Flotillin-2 deficiency leads to reduced lung metastases in a mouse breast cancer model
Flotillin microdomains, specialized lipid raft domains in cell membranes, serve as physical platforms for many different molecules important in crucial intracellular signaling pathways. Flotillin-2 (Flot2), together with flotillin-1, is a marker for lipid raft microdomains distinct from caveolar lipid rafts, and has been implicated in the progression of cancer and metastasis formation. Based largely on studies in xenograft models, flotillin-2 has been implicated in the progression of multiple types of human tumors, including breast cancer. In our studies, we identified flotillin-2 as highly amplified in a high-throughput comparative genomic hybridization screen of human breast cancer cell lines and breast tumor samples. Short hairpin RNA-mediated reduction of flotillin-2 protein levels significantly reduced the tumorigenicity and metastatic capability of a human breast cancer cell line in vivo. We generated mice deficient for flotillin-2 and also found a reduction of flotillin-1 protein levels and complete absence of flotillin-specific membrane microdomains in these mice. To examine the role of Flot2 in mammary tumorigenesis and lung metastasis, we used an in vivo molecular genetics approach, crossing a well-characterized transgenic mouse model of breast cancer, the MMTV-PyMT (mouse mammary tumor virus-polyoma middle T antigen) mouse, with gene-targeted Flot2(-/-) mice. Flotillin-2 deficiency lead to a striking reduction in the number of lung metastasis observed, but had no influence on primary tumor formation in this model. Our results indicate, using a novel in vivo animal model approach, that Flot2 is an important regulator of mammary tumor-derived lung metastasis.
- Ontario Institute for Cancer Research Canada
- IBM (Canada) Canada
- University of Toronto Canada
- Hiroshima University Japan
- University Health Network Canada
Comparative Genomic Hybridization, Lung Neoplasms, Mammary Neoplasms, Experimental, Membrane Proteins, Disease Models, Animal, Mice, Cell Transformation, Neoplastic, Cell Line, Tumor, Animals, Humans, Female, Gene Silencing
Comparative Genomic Hybridization, Lung Neoplasms, Mammary Neoplasms, Experimental, Membrane Proteins, Disease Models, Animal, Mice, Cell Transformation, Neoplastic, Cell Line, Tumor, Animals, Humans, Female, Gene Silencing
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
