Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis inDrosophila

Authors: Rathke, C; Baarends, Willy; Jayaramaiah-Raja, S; Bartkuhn, M; Renkawitz, R; Renkawitz-Pohl, R;

Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis inDrosophila

Abstract

In higher organisms, the chromatin of sperm is organised in a highly condensed protamine-based structure. In pre-meiotic stages and shortly after meiosis, histones carry multiple modifications. Here, we focus on post-meiotic stages and show that also after meiosis, histone H3 shows a high overall methylation of K9 and K27 and we hypothesise that these modifications ensure maintenance of transcriptional silencing in the haploid genome. Furthermore, we show that histones are lost during the early canoe stage and that just before this stage, hyper-acetylation of histone H4 and mono-ubiquitylation of histone H2A occurs. We believe that these histone modifications within the histone-based chromatin architecture may lead to better access of enzymes and chromatin remodellers. This notion is supported by the presence of the architectural protein CTCF, numerous DNA breaks, SUMO, UbcD6 and high content of ubiquitin, as well as testes-specific nuclear proteasomes at this time. Moreover, we report the first transition protein-like chromosomal protein, Tpl94D, to be found in Drosophila. We propose that Tpl94D – an HMG box protein – and the numerous DNA breaks facilitate chromatin unwinding as a prelude to protamine and Mst77F deposition. Finally, we show that histone modifications and removal are independent of protamine synthesis.

Keywords

Cell Nucleus, Male, CCCTC-Binding Factor, Proteasome Endopeptidase Complex, Chromosomal Proteins, Non-Histone, Lysine, Acetylation, Arginine, Chromatin Assembly and Disassembly, EMC MGC-02-82-01, Chromatin, Nucleosomes, Animals, Genetically Modified, DNA-Binding Proteins, Histones, Repressor Proteins, Drosophila melanogaster, Animals, Drosophila Proteins, Protamines, RNA Polymerase II

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    200
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
200
Top 1%
Top 10%
Top 1%
bronze