Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Society of Nephrology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Tissue Plasminogen Activator Activates NF-κB through a Pathway Involving Annexin A2/CD11b and Integrin-Linked Kinase

Authors: Ling, Lin; Chuanyue, Wu; Kebin, Hu;

Tissue Plasminogen Activator Activates NF-κB through a Pathway Involving Annexin A2/CD11b and Integrin-Linked Kinase

Abstract

NF-κB activation is central to the initiation and progression of inflammation, which contributes to the pathogenesis of CKD. Tissue plasminogen activator (tPA) modulates the NF-κB pathway, but the underlying mechanism remains unknown. We investigated the role of tPA signaling in macrophage NF-κB activation and found that tPA activated NF-κB in a time- and dose-dependent manner. tPA also induced the expression of the NF-κB-dependent chemokines IP-10 and MIP-1α. The protease-independent action of tPA required its membrane receptor, annexin A2. tPA induced the aggregation and interaction of annexin A2 with integrin CD11b, and ablation of CD11b or administration of anti-CD11b neutralizing antibody abolished the effect of tPA. Knockdown of the downstream effector of CD11b, integrin-linked kinase, or disruption of its engagement with CD11b also blocked tPA-induced NF-κB signaling. In vivo, tPA-knockout mice had reduced NF-κB signaling, fewer renal macrophages, and less collagen deposition than their counterparts. Taken together, these data suggest that tPA activates the NF-κB pathway in macrophages through a signaling pathway involving annexin A2/CD11b-mediated integrin-linked kinase.

Related Organizations
Keywords

Mice, Knockout, CD11b Antigen, Macrophages, NF-kappa B, Protein Serine-Threonine Kinases, Mice, Tissue Plasminogen Activator, Animals, Annexin A2, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
bronze