Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/61f9f...
Article . 2022
Data sources: DOAJ
versions View all 4 versions

An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention

Authors: Jaspreet Kaur; Gaurav Mudgal; Kartar Chand; Gajendra B. Singh; Kahkashan Perveen; Najat A. Bukhari; Sandip Debnath; +3 Authors

An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention

Abstract

AbstractA peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieriatrifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacteriumpusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l−1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l−1), gibberellic acid (172.98 mg l−1), ammonia (42.66 µmol ml−1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylicaciddeaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants’ physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.

Keywords

Science, Q, R, Water, Plant Roots, Article, Soil, RNA, Ribosomal, 16S, Medicine, Soil Microbiology, Rhizobium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 1%
Green
hybrid